1103 Integer Factorization (30 分)
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
1 | N = n[1]^P + ... n[K]^P |
where n[i]
(i
= 1, …, K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen — sequence { a1,a2,⋯,a**K } is said to be larger than { b1,b2,⋯,b**K } if there exists 1≤L≤K such that a**i=b**i for i<L and a**L>b**L.
If there is no solution, simple output Impossible
.
Sample Input 1:
1 | 169 5 2 |
Sample Output 1:
1 | 169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2 |
Sample Input 2:
1 | 169 167 3 |
Sample Output 2:
1 | Impossible |
作者: CHEN, Yue
单位: 浙江大学
时间限制: 1200 ms
内存限制: 64 MB
代码长度限制: 16 KB
题目大意
给出N,K,P,要求将N分解为K个数的P次幂
分析
dfs暴力求解。由大到小,最大值为√(N-k-1)[实际上是p次方根,此时剩余k-1个数全为1]。通过upbound参数,控制本次选的数不能大于上一次选的,从而实现选的数非递增排序。findres的参数分别为剩余的n,已有数字个数,保存已有数字的vector,当前数字上限,已有数字和。剪枝规则如下:
1.当剩余的n恰好等于k-cnt时,说明余下的数字全为1。
2.当n小于0或者已有数字大于k个时,返回
3.当n等于0且恰有k个数,比较和,更新结果。
然后从upbound开始,依次判断。x为当前数的p次。假设选取当前数。则剩余k-cnt-1个数的最大值需大于n-x,最小值需小于n-x。符合条件才继续搜索。
代码
1 |
|